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Abstract. We study the Landau damping of the surface plasmon resonance of metallic nanoparticles em-
bedded in different environments of experimental relevance. Important oscillations of the plasmon linewidth
as a function of the radius of the nanoparticles are obtained from numerical calculations based on the time
dependent local density approximation. These size-oscillations are understood, within a semiclassical ap-
proximation, as a consequence of correlations in the spectral density of the nanoparticles. We treat inert
matrices, as well as the case with an unoccupied conduction band. In the latter case, the plasmon lifetime
is greatly reduced with respect to the inert case, but the non-monotonous size-dependence persists.

PACS. 71.45.Gm Exchange, correlation, dielectric and magnetic response functions, plasmons –
31.15.Gy Semiclassical methods – 36.40.Vz Optical properties of clusters

1 Introduction

In recent years, the use of femtosecond laser pulses has
made it possible to investigate the time evolution of
collective and quasi-particle excitations in metallic
nanoparticles. In these experiments, the actual time-
resolved evolution of the energy transfer to the environ-
ment can be studied [1–3]. A determining factor in the
relaxation processes is the lifetime of the collective exci-
tations (surface plasmons), which for small cluster sizes
(0.5 nm � R � 2 nm), is limited by Landau damping (de-
cay into electron-hole pairs). The lifetime of the surface
plasmon resonance is thus not only a problem of funda-
mental interest, but also important for possible applica-
tions.

In the last decade, the analogy of surface plasmons
with nuclear giant resonances has been exploited, in or-
der to obtain a physical understanding, as well as analyti-
cal and numerical estimations, of the plasmon lifetime [4–
7]. Following these approaches, and using a semiclassical
formalism, an oscillatory behavior of the level width was
determined for free clusters of small sizes (a number of
atoms N between N = 20 and N = 1000). These analyt-
ical results have been verified against numerical calcula-
tions within the time-dependent local density approxima-
tion (TDLDA) for a jellium model [8], and the oscillations
in the level width with the size of the nanoparticles were
shown to arise from the electron-hole density-density cor-
relations in the angular restricted density of states.

The non-monotonous size-dependence of the plasmon
lifetime has been experimentally observed in free alkaline
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metal nanoparticles [9,10], as well as in embedded noble
metal clusters [11]. Further experimental and theoretical
work would be needed in order to unambiguously char-
acterize the level width oscillations. While the analytical
calculations are most easily done for free alkaline clusters,
metallic noble metal clusters embedded in a transparent
matrix are more conveniently investigated from the ex-
perimental point of view [2]. It is then important to study
theoretically the size-dependence of the plasmon lifetime
for embedded particles. This is the purpose of this work,
where we extend the results of reference [7] to different
kinds of environments.

The problem of the plasmon lifetime in metallic
nanoparticles embedded in a matrix is considerably more
difficult, and less understood, than in the case of free clus-
ters. The most obvious effect when the clusters are em-
bedded in a dielectric material, is the change produced
by the dielectric constant of the matrix, that moves the
position of the plasmon resonance according to the Mie
formula [13], and can also affect the width of the plas-
mon [7]. Moreover, when the matrix is not inert, it can
react with the atoms in the surface of the nanoparticle.
The electronic states on the surface are modified and con-
tribute to the loss of coherence of the collective state. This
is the so-called chemical interface damping. In addition,
the presence of a conduction band in the matrix at an en-
ergy accessible to the electrons weakens the confinement,
and contributes to the width of the surface plasmon in
an important way. All these different effects can add up
and make the theoretical description of the system quite
involved.

The experiments of Charlé et al. [11] studied the in-
fluence of the matrix environments on surface plasmon
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excitations of small silver particles. They found a strong
broadening of the surface plasmon resonance when the
particles were embedded in a reactive matrix such as CO,
as compared to an inert matrix from a noble gas like
Ar. This effect has been attributed to chemical interface
damping. Also, a very strong broadening has been ob-
served by Hövel et al. [14] for silver particles embedded in
SiO2. In a very interesting and pioneering paper, Persson
proposed a model for explaining these experimental ob-
servations that took into account the modification of the
electronic eigenstates of the metallic nanoparticle by the
layer of absorbates on its surface and by a conduction
band [15].

In the next section we recall the basic theoretical facts
of the calculation of the plasmon lifetime within a semi-
classical approximation. We then study the linewidth of
embedded clusters from TDLDA calculations for inert ma-
trices. The case of matrices with a conduction band is
treated in Section 4. The theoretical treatment of the
chemical interface damping is out of reach of our theo-
retical description, but the cases that we will consider are
not thought to be considerably influenced by this effect.

2 Theoretical background for free clusters

The Landau damping of the dipole plasmon can be calcu-
lated treating the collective excitation as an external per-
turbation, which can give rise to the creation of electron-
hole excitations [12]. Then, Fermi’s golden rule yields the
linewidth

∆Γ (R) = 2π
∑
ph

|〈p|δV |h〉|2 δ(�ωM − εp + εh) , (1)

where |p〉 and |h〉 are electron and hole states in the
self-consistent field, with its energies given by εp and εh,
respectively, δV is the dipole field due to the surface plas-
mon, and ωM is the frequency of the plasmon, which clas-
sically is given by the Mie formula,

ωM =
ωp√

εd + 2εm
, (2)

where ωp is the plasma frequency, εd is the dielectric func-
tion of the d electrons and εm is the dielectric function of
the embedding matrix

In the case of spherical symmetry, assuming that the
confinement and the interactions lead to hard walls at
radius R in the self-consistent field, we can evaluate equa-
tion (1). Integrating over the electron-hole states, one ob-
tains [5]

∆Γ (R) = cγ

EF+�ωM∫

EF

dE
∑
L

∑
L′=L±1

(2L + 1)(2L′ + 1)

× 〈L, 0; 1, 0|L′, 0〉2E(E − �ωM)dL(E)dL′(E − �ωM),
(3)

where 〈L, 0; 1, 0|L′, 0〉 is a Clebsch-Gordan coefficient, γ =
(2π�

3)/(3NM2ωMR4), c = 4MR2/�
2, EF is the Fermi

energy, and dL(E) is the one-dimensional density of states
with total angular momentum L.

Using the semiclassical expression for the density of
states of the one-dimensional problem [16], we can decom-
pose dL(E) in its smooth (zero-length trajectories) and
oscillating components (arising from periodic orbits). We
then obtain two contributions to the width of the plasmon
resonance [7]

∆Γ = Γ0 + Γosc. (4)

The smooth term Γ0 arises from the smooth component
of dL and exhibits the well-known 1/R dependence firstly
proposed by Kawabata and Kubo [5,17]

Γ0(R) =
3�

4
vF

R
g(ξ) , (5)

where ξ = �ωM/EF , g(ξ) is a smoothly decreasing func-
tion with g(0) = 1, and vF is the Fermi velocity.

The oscillating part Γosc arises from the density oscil-
lations as a function of the energy. Within a semiclassical
approach, it can be written as [7]

Γosc ≈ 6
√

2π�

MR2
√

kFRξ3

∞∑
r=1

1√
r

cos(2rkFRξ), (6)

where the sum runs over all repetitions r of the period of
the equivalent one-dimensional motion. The amplitude of
this oscillations can be of the order of Γ0 for small clusters.

3 Embedded metallic clusters in inert
matrices

We want to address the question of what happens with
the oscillations and the typical value of the linewidth of
the plasmon when the nanoparticles are embedded in a
matrix. In reference [7] we presented some calculations for
noble metals embedded in inert matrices. The numerical
results were obtained using the TDLDA formulation by
Bertsch [18] but modifying the residual interaction to in-
clude the frequency-dependent dielectric function of the d
electrons εd(ω) and the dielectric constant of the matrix
εm [19,20]. In order to maintain the spherical symmetry
of our problem we always considered cluster sizes corre-
sponding to magic numbers of atoms.

For inert matrices, the plasmon linewidth is affected
only by the modification of the frequency ωM through the
parameter ξ of equations (5, 6). This is due to the fact that
the self-consistent potential, and therefore the electron-
hole density-density correlation function, are practically
unchanged by εm, but the energy position of the plasmon
peak follows the Mie formula. Results for the width of the
plasmon in the case of Ag nanoparticles embedded in a
matrix of Ar are shown in Figure 1. In the inset we show a
typical spectrum of the photo-absorption cross-section for
Ag440 embedded in Ar. The singularities of the spectrum
are smeared out by a non-zero intrinsic Γi. This value of
Γi is subtracted at the end of the calculation and we verify
that the fit of ∆Γ is not sensitive to it, provided that it
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Fig. 1. Linewidth as a function of the radius (in units of the
Bohr radius aB = 0.53 Å) for silver nanoparticles in an Ar ma-
trix calculated within TDLDA (full circles) together with the
experimental results of reference [11] (empty squares). The dot-
ted line through the numerical points is a guide-to-the-eye. The
dashed and the solid lines represent, respectively, Γ0(R) and
∆Γ (R) according to equations (4–6) (with a reduction factor
of 3 as discussed in the text). Inset: logarithm of the TDLDA
absorption cross section for Ag440 (R/aB = 2.2), showing the
pronounced surface plasmon resonance, fitted by a Lorentzian
(dotted line). The excited states are indicated by tick marks
and their oscillation strengths given by the height of the ver-
tical lines.

is larger than a minimum value. ∆Γ exhibits pronounced
oscillations as a function of the radius. The smooth part of
the linewidth, and our semiclassical result, are an overall
factor of 3 larger than the numerical results. Therefore,
they have been rescaled for in the figure. The experimen-
tal values of Charlé et al. (empty squares) are relatively
well described by the TDLDA results (within 20%). The
oscillations are suppressed due to the large particle sizes
and the smearing resulting from wide size-distributions.
The difference between the Kubo formula, on one hand,
and the numerical and experimental results, on the other
hand, is not understood. In any case, given the approx-
imations used in the semiclassical calculation, it is not
surprising that, although this simple theory works well
with alkaline metals, when we include εd(ω) there are fac-
tors not taken into account. Nevertheless, the analytically
obtained oscillations have the correct period and relative
size.

Moving through different values of εm we change the
position of the plasmon frequency ωM. Since the electron-
hole density-density correlation function is insensitive to
εm, the plasmon lifetime behaves in a non-monotonous
fashion as a function of εm. Thus, we can use the dielec-
tric constant of the embedding medium as a probe for
this density-density correlation function. As an example,
we show in Figure 2 the results of TDLDA calculations
for the width of the surface plasmon resonance for silver
clusters of two different sizes (N = 92 and N = 198) as

Fig. 2. Width of the surface plasmon resonance for silver
clusters of two different sizes as a function of εm. Inset: energy
of the plasmon together with the expression for the Mie formula
(solid line) with a small modification of the bulk ωp.

a function of εm. The oscillations in the width are very
different for the two sizes due to the shell filling and the
corresponding density correlation function. Although the
range of εm over which we can see the complete oscillation
of the plasmon lifetime is very large, it should be possible
to observe maxima and minima in experiments, if we are
able to change the dielectric constant of the surrounding
medium. In the inset of this figure we show the position of
the plasmon peak as a function of εm for the correspond-
ing sizes. The behavior with εm is very well described by
the Mie formula, and the two sizes behave in the same
way. We can see almost no difference in the position of
the plasmon peak between the sizes for the same value of
εm, but there are great changes in its width.

4 Ag nanoparticles embedded in a matrix
with a conduction band

The SiO2 used in experiments for embedding Ag nanopar-
ticles is an amorphous solid with a conduction band with
a minimum situated at −1.7 eV with respect to the vac-
uum energy. The valence band maximum occurs 10.6 eV
below the vacuum energy and has no influence in the Ag-
surface plasmon [15]. Chemical interaction in the surface
between Ag and the SiO2 is not expected to occur [14]
and chemical interface damping does not influence the
width of the plasmon in this case. In order to imple-
ment the TDLDA calculations, we simulate the embedded
medium by a change in the boundary conditions for the
calculation in the self-consistent potential V (r) so that
V (r) → −1.7 eV when r → ∞. In this way the electrons
are less bounded to the cluster and can more easily go
to the conduction band in the matrix. The results of the
self-consistent calculation of V (r) and its comparison with
the potential without conduction band are shown in the
inset of Figure 3. We can clearly see that the electrons at
EF are less tightly bounded, which translates in a small
redshift in the position of the plasmon peak due to the
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Fig. 3. Width of the surface plasmon resonance as a function
of the radius of the particle for silver clusters embedded in
SiO2 (the matrix is assumed to support a conduction band, see
text). The dashed line is the best fit to 1/R behavior. Inset:
comparison of the self-consistent potential V (r) with (full line)
and without (dashed line) the conduction band. We indicate
the position of the Fermi energy with an arrow.

bigger spill-out and into an increase (by a factor of 2) of
the width (compare with Fig. 1). This is consistent with
the factor of 3 enhancement observed in the experiments
of reference [14]. Although in these experiments the dis-
tribution of sizes has an uncontrolled dispersion that can
increase the results for the linewidth of the optical ab-
sorption experiments, a more refined model including the
self-interaction correction to the TDLDA, and a corrected
dielectric function for the surface, would be needed for a
more quantitative agreement. However, we can clearly see
that the non-monotonous behavior is maintained and is
of the same order as for free Ag nanoparticles. Different
kinds of glasses that are used in experiments should pro-
duce similar increases in the width of the plasmon if the
difference between the energy of the minimum of the con-
duction band and EF is not too far from the energy of the
plasmon.

5 Conclusions

As other size-dependent phenomena in clusters, the width
of the plasmon presents a leading-order (smooth) contri-
bution (that goes like 1/R), with oscillatory corrections
due to shell effects. For the plasmon lifetime these size-
dependent corrections are much more important than for
the position of the resonance. Going from free to embed-
ded clusters makes this difference still more pronounced.

We have shown in this work that the size-dependent
oscillations of the linewidth, in free as well as in embedded
clusters, arise from electron-hole density correlations.

Such an effect can be explored by varying the dielectric
constant of the matrix around the nanoparticle.

We have also considered the width of the plasmon for
a simple model of nanoparticles of Ag surrounded by a
matrix of amorphous SiO2 with a conduction band. The
width is increased in a way that agrees semi-quantitatively
with the experiments. The oscillations in the width are
still present and could be seen in experiments with a nar-
row distribution of sizes. An adequate choice of the com-
position of the matrix should make it possible to tune the
lifetime of the surface plasmon which can be useful in cer-
tain applications.
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20. J. Lermé, Eur. Phys. J. D 10, 265 (2000)


